Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity.

نویسندگان

  • Jaclyn Durkin
  • Aneesha K Suresh
  • Julie Colbath
  • Christopher Broussard
  • Jiaxing Wu
  • Michal Zochowski
  • Sara J Aton
چکیده

Two long-standing questions in neuroscience are how sleep promotes brain plasticity and why some forms of plasticity occur preferentially during sleep vs. wake. Establishing causal relationships between specific features of sleep (e.g., network oscillations) and sleep-dependent plasticity has been difficult. Here we demonstrate that presentation of a novel visual stimulus (a single oriented grating) causes immediate, instructive changes in the firing of mouse lateral geniculate nucleus (LGN) neurons, leading to increased firing-rate responses to the presented stimulus orientation (relative to other orientations). However, stimulus presentation alone does not affect primary visual cortex (V1) neurons, which show response changes only after a period of subsequent sleep. During poststimulus nonrapid eye movement (NREM) sleep, LGN neuron overall spike-field coherence (SFC) with V1 delta (0.5-4 Hz) and spindle (7-15 Hz) oscillations increased, with neurons most responsive to the presented stimulus showing greater SFC. To test whether coherent communication between LGN and V1 was essential for cortical plasticity, we first tested the role of layer 6 corticothalamic (CT) V1 neurons in coherent firing within the LGN-V1 network. We found that rhythmic optogenetic activation of CT V1 neurons dramatically induced coherent firing in LGN neurons and, to a lesser extent, in V1 neurons in the other cortical layers. Optogenetic interference with CT feedback to LGN during poststimulus NREM sleep (but not REM or wake) disrupts coherence between LGN and V1 and also blocks sleep-dependent response changes in V1. We conclude that NREM oscillations relay information regarding prior sensory experience between the thalamus and cortex to promote cortical plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The corticothalamic system in sleep.

The transition from wakefulness to NREM sleep is associated with typical signs of brain electrical activity, characterized by prolonged periods of hyperpolarization and increased membrane conductance in thalamocortical (TC) neurons, with the consequence that incoming messages are inhibited and the cerebral cortex is deprived of signals from the outside world. There are three major oscillations ...

متن کامل

NREM Sleep Oscillations and Brain Plasticity in Aging

The human electroencephalogram (EEG) during non-rapid eye movement sleep (NREM) is characterized mainly by high-amplitude (>75 μV), slow-frequency (<4 Hz) waves (slow waves), and sleep spindles (∼11-15 Hz; >0.25 s). These NREM oscillations play a crucial role in brain plasticity, and importantly, NREM sleep oscillations change considerably with aging. This review discusses the association betwe...

متن کامل

Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks

Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial m...

متن کامل

Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels.

T-type calcium channels have been implicated as a pacemaker for brain rhythms during sleep but their contribution to behavioral states of sleep has been relatively uncertain. Here, we found that mice lacking alpha1(G) T-type Ca(2+) channels showed a loss of the thalamic delta (1-4 Hz) waves and a reduction of sleep spindles (7-14 Hz), whereas slow (<1 Hz) rhythms were relatively intact, when co...

متن کامل

O23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines

The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 39  شماره 

صفحات  -

تاریخ انتشار 2017